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Abstract. Relying on the one-to-one correspondence between real localized potentials and
transfer matrices well known from inverse scattering theory, the Saxon–Hutner conjecture is
reformulated initially as a group-theoretical and subsequently as a Lie-algebraic problem. A
very basic Lie theory, in conjunction with time-reversal symmetry of the time-independent
Schr̈odinger equation, leads to a fairly general condition which ensures the validity of the
Saxon–Hutner theorem.

No matter which approach is followed, the main difference between classical and quantum
mechanics is the fundamental role assigned to non-commuting operators in quantum physics.
The algebra of non-commuting operators has been the subject of intensive studies over the
years by both mathematicians and physicists in various contexts and great many profound
results have been derived which are of potential value for quantum considerations. A
problem which is often met in concrete situations is that of expressing the product of two
matrizants (exponential operators) in a suitable equivalent form. Our purpose in the present
paper is to extract useful information about the electronic spectra of binary alloys from the
spectra of the alloying constituents by making use of the properties of matrizants. The basic
conjecture with which we will deal here was made originally by Saxon and Hutner [1] and
concerns the coupling of impurities introduced into an infinite one-dimensional lattice. It
states that:

‘Forbidden energies that are common to the pure A crystal and pure B crystal (with
the same lattice constant) will always be forbidden energies in any arrangement of
A and B atoms in a substitutional solid solution.’

In that paper the authors verified their conjecture only for the special case of a B atom
which appears periodically in an infinite lattice of A. Luttinger [2] was the first to present
the proof of such a theorem for the special case of twoδ-potentials situated symmetrically
in the lattice of a fixed cell constant, (no spatial, only strength disorder). Guided by the
well known fact that theδ-function lattice lacks some important qualitative characteristics
found in real crystals, while lattices built up of square-well potentials do not possess these
characteristics, Landauer and Helland [3] checked the validity of the theorem in the latter
case. Their findings forced them to conclude that the original theorem cannot be extended
beyondδ-function potentials, and Kerner [4] had tried to prove this rigorously. However, he
was unable to show more than that the Saxon–Hutner theorem is not satisfied automatically,
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and suggested a criterion based on polarity considerations which seems to restore the theorem
in a modified form. Numerical work shows that this polarity criterion is of restricted
generality, as Sah and Srivastava [5] have exhibited explicit examples of its failure. The
more general question as to which properties of a mixed lattice can be inferred from a
knowledge of the individual band structures of the pure lattices has received more definite
answers after the appearance of papers by Matsuda [6], Hori [7], Dworin [8], Tong and
Tong [9] and Mladenov [10]. The basic research interest there was the conditions under
which the Saxon–Hutner theorem is valid. Several sufficient conditions have been found
which guarantee its accuracy. In the meantime, Subramanian and Bhagwat [11] transferred
Luttinger’s result into the relativistic situation and later on a general criterion which covers
both relativistic and non-relativistic domains was derived in [12]. A number of such criteria
and their interrelations have been analysed by Hermann [13]. The work of Erdös and
Herndon [14] provides a comprehensive review of methods, both analytical and numerical,
for the non-relativistic case of the Saxon–Hutner theorem, as well as an extensive list of
references.

The purpose of the present paper is to derive a novel condition which ensures the validity
of the Saxon–Hutner theorem. The transfer-matrix formalism will be used, as this allows
encoding of this genuine physical problem into mathematical form—initially as a group-
theoretical and subsequently as a Lie-algebraic one. The necessary mathematical apparatus
can be found in any book that deals with applications of group-theoretical methods in
physics (see, e.g., Fässler and Stiefel [15]).

By definition, the transfer matrix relates the wavefuunction on the left- and right-
hand sides of the potential barrier. The crucial point in this formalism is the observation
that the real localized potentials and transfer matrices are in one-to-one correspondence.
Furthermore, it turns out that they are elements of one of the isomorphic Lie groups
SU(1, 1), SL(2, R) or Sp(2, R). Which group they form depends on the choice of the basis
in the space of solutions of the time-independent one-dimensional Schrödinger equation. The
relationships between these three-dimensional groups, the groupSO(2, 1) which they cover
twice and the Schrödinger equation on the line have been clarified by Peres [16]. He proved
thatSL(2, R) is the most appropriate of the above mentioned groups (cf also Kerner [17]).
This statement will be made more precise at the end of the paper.

Now we turn to the mathematical formulation of the Saxon–Hutner theorem. The real
transfer matrices in question are of the form:

M(E) =
(
a(E) b(E)

c(E) d(E)

)
det(M(E)) = a(E) d(E)− b(E) c(E) = 1. (1)

As examples, we write down the transfer matrices corresponding to theδ-potential potential
scattererV (x) ≡ η δ(x) (below a denotes the lattice constant):

M =
(

cos(ka) sin(ka)/k

−k sin(ka)+ η cos(ka) cos(ka)+ η sin(ka)/k

)
k2 = E (2)

and the potential stepV ≡ constant

M =
(

cosh(γ a) sinh(γ a)/γ

γ sinh(γ a) cosh(γ a)

)
γ = (V − E)1/2. (3)

Let us now consider an arbitrary binary linear lattice composed of two types of atomsA

andB, each havingri, si ∈ Z+ in the ith period,

Ar1Bs1 . . . ArkBsk . (4)
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The group nature of the individual transfer matricesMA andMB representingA and B
atoms makes possible to define the total transfer matrixMAr1Bs1 ...Ark Bsk of an arbitrary linear
chain (4) as the product

M
sk
B M

rk
A · · ·Ms1

B M
r1
A . (5)

If M(E) is the transfer matrix for the unit cell in the periodic lattice the forbidden energies
for electrons propagating there are given by the condition

| tr(M(E))| > 2. (6)

Using the transfer-matrix approach, the Saxon–Hutner theorem may be formulated as
follows:

Is it true that for any arrangementsAr1Bs1 . . . ArkBsk of A andB atoms we have

| tr(Msk
B M

rk
A · · ·Ms1

B M
r1
A )| > 2 (7)

provided that| tr(MA)|, | tr(MB)| > 2?

The mathematical difficulties in proving such a statement stem from the fact that each
transfer matrix is described generally by four real parameters(a, b, c, d) under a constraint
(ad − bc = 1) instead of three independent ones. This parametrization redundancy is the
main obstacle to proving the Saxon–Hutner theorem and similar results. Here we will use
the so-called exponential form (matrizant) of the groupSL(2, R) introduced above. Its Lie
algebrasl(2, R) comprises 2× 2 matrices with zero trace. Despite of the well known fact
that the exponential map is not surjective for this group, any of its elements can be written
in one of the following two forms:

g = ±Exp(P̃ ) P̃ =
(
w u

v −w
)
∈ sl(2, R). (8)

From now on we will not make any distinction between the atoms and the transfer matrices
representing them, i.e.A,B will be used to denoteMA andMB . Also, as we are interested
in the form which the transfer matrix (sayA for definiteness), takes for forbidden energies
we will consider just the latter case. This further specifies its form:

A = ±Exp(λAÃ) Ã ∈ sl(2, R) Ã2 = I detÃ = −1 λA ∈ R+ (9)

where I denotes 2× 2 identity matrix. An alternative to this algebraic description is to
considerÃ as a point on the single-sheeted hyperboloidH 2 in R3.

Taking into account all the above, we may write

A = ±
(
I ch(λA)+ Ã sh(λA)

)
λA = arch| tr(A/2)|
Ã = ± (A∓ I ch(λA)) / sh(λA).

(10)

The nice feature of this representation is that up to a sign we have

An ∼ (Exp(λAÃ))
n = Exp(nλAÃ) = I ch(nλA)+ Ã sh(nλA) . (11)

This sign is actually of no importance here, as we have to compute

| tr(M)| =
∣∣∣tr [Exp(skλBB̃) Exp(rkλAÃ) · · ·Exp(s1λBB̃) Exp(r1λAÃ

] ∣∣∣
=
∣∣∣tr {[I ch(skλB)+ B̃ sh(skλB)] · · · [I ch(r1λA)+ Ã sh(r1λA)]

} ∣∣∣ . (12)
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Let us think of the last equation as being multiplied out. Because ofÃ2 = B̃2 = I and
the linearity of the trace map, all terms containing an odd number of matrices will produce
zero. Thus we get a finite series of the form

| tr(M)| =
∣∣∣∣∣ tr

{
k∑
ν=0

ϕν (ÃB̃)
ν

} ∣∣∣∣∣ (13)

in which all coefficientsϕν are positive, as they are sums and products of hyperbolic
functions of positive arguments. So, in order to estimate (13) we have to investigateϕν
and tr(ÃB̃)ν in greater detail. Now one can easily see thatÃ and B̃ are isospectral, which
means that they are similar, i.e. there exists a non-degenerate matrixU such that

B̃ = U ÃU−1 or equivalently U Ã = B̃ U. (14)

Besides, one can chooseU to additionally satisfy

tr(U) = 0 det(U) = −1 U2 = I or, identically, U−1 = U. (15)

Taking all this into consideration,U can be written in the form

U =
(
x y

z −x
)

det(U) = −x2− yz = −1. (16)

Let (uA, vA, wA) and (uB, vB, wB) be the coordinates of̃A and B̃ as specified in (8).
Equalization of the matrix elements in (14) leads to a system of homogeneous linear
equations for the unknown(x, y, z) entries ofU :

x wA + y vA = x wB + z uB
x uA − y wA = y wB − x uB
z wA − x vA = x vB − z wB
z uA + x wA = y vB + x wB.

(17)

One can take any solution of this system provided that the matrixU is non-degenerate.
For example, working in the fixed local chart8z

14 = {wA 6= wB, vA 6= −vB} from the
atlasA = {⋃8τ

αβ; α, β = 1, 2, 3, 4, α < β, τ = x, y, z},
8x12 = {uB 6= 0, wA 6= −wB } 8

y

12 = {uB 6= 0, uA 6= −uB } 8z12 = {uB 6= 0, vA 6= −vB }
8x13 = {vB 6= 0, wA 6= −wB } 8

y

13 = {vA 6= 0, uA 6= −uB } 8z13 = {vA 6= 0, vA 6= −vB }
8x14 = {uAvA 6= uBvB } 8

y

14 = {wA 6= wB, uA 6= −uB } 8z14 = {wA 6= wB, vA 6= −vB }
8x23 = {wA 6= −wB } 8

y

23 = {wA 6= −wB, uA 6= −uB } 8z23 = {wA 6= −wB, vA 6= −vB }
8x24 = {uA 6= 0, wA 6= −wB } 8

y

24 = {uA 6= 0, uA 6= −uB } 8z24 = {uA 6= 0, vA 6= −vB }
8x34 = {vB 6= 0, wA 6= −wB } 8

y

34 = {vB 6= 0, uA 6= −uB } 8z34 = {vB 6= 0, vA 6= −vB }
(18)

which covers the product manifoldH 2
Ã
×H 2

B̃
, one can easily derive from the first and fourth

equations in (17) that

x = wA + wB
vA + vB z and y = uA + uB

vA + vB z. (19)

Now, the determinant condition onU implies that{[
wA + wB
vA + vB

]2

+ uA + uB
vA + vB

}
z2 = 1 (20)
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and it can be solved forz if and only if

uA vB + uB vA + 2wA wB + 2> 0. (21)

Similarly, the same term comes out in any other local chart, which actually means that
equation (21) is a global condition. As our goal is to estimate

∑k
ν=0 ϕν tr(ÃB̃)ν efficiently,

let us recall other important properties of the trace map besides the linearity which has been
used to derive (13). First of all these are invariances under permutation and conjugations
with non-degenerate matrices, i.e.

tr(X Y) = tr(Y X) tr(g X g−1) = tr(X) ∀ g,X, Y ∈ Mat(2, R) det(g) 6= 0. (22)

Furthermore, ifS andT are unimodular matrices we can apply the Hamilton–Cayley theorem
to find

tr(S T ) = tr(S) tr(T )− tr(T S−1). (23)

So, let us take the simplest case of theAr1Bs1 section for which we have

tr(Ar1Bs1) = ϕ0 tr(I )+ ϕ1 tr(ÃB̃) (24)

where ϕ0 = ch(r1λA) ch(s1λB) and ϕ1 = sh(r1λA) sh(s1λB). Since by hypothesis the
arguments of the hyperbolic functions are positive, the hyperbolic cosines are strongly
greater than unity, i.e.ϕ0 > 1. We will also have| tr(M)| > 2 provided that the second
term is positive. On the same footing the hyperbolic sines are strongly positive and therefore
we end with the condition

tr(ÃB̃) = uA vB + uB vA + 2wA wB > 0 (25)

which is suficient for the validity of the Saxon–Hutner theorem in this case. More complex
cases of two, three and an arbitrary number of segmentsAr1Bs1 . . . AriBsi , i = 2, 3, . . . , k
are dealt with by combining (23) and (24), which by an induction process produce

tr(M) =
k∑
ν=0

ψν
[
tr(ÃB̃)

]ν
. (26)

However, it is trivial to observe thatψ0 is of the form

ch(m1λA) ch(n1λB) · · · ch(mkλA) ch(nkλB) mi, ni ∈ Z+ i = 1, 2, . . . , k (27)

plus other non-negative terms which appear as cross multiplication terms in the expansion
of AriBsi , i = 1, 2, . . . , k and consecutive simplifications. Relying as before on the
fundamental properties of the hyperbolic functions, we can conclude thatψ0 > 1 holds
generally andψν > 0 is fulfilled for all ν ∈ {1, 2, 3, . . . , k}. Hence equation (25) is just
the condition we seek. It might be appropriate to point out that this condition is consistent
with (21), because the Saxon–Hutner theorem can also be viewed as a part of the long-
standing problem of classifying (orbits of) pairs of matrices under simultaneous similarity
transformations:

(H,K) → (H ′,K ′) = (g H g−1 , g K g−1) H,K ∈ sl(2, R). (28)

Taken together, equations (21) and (25) separate the class (stratum) of orbits for which the
Saxon–Hutner theorem is satisfied (for more details about orbits see [18]).

As an illustration, let us apply our sign test in the most classical situation, that of
symmetric δ-potentials of different amplitudes, as treated by Luttinger [2]. Curiously
enough, he was also able to show that the Saxon–Hutner conjecture has an analogy in
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the case of transmission of a wave down a line loaded with two terminals. In both cases
the parameters of the transfer matrices are of the form

uC =
√∣∣∣∣C11− 1

C11+ 1

∣∣∣∣µC, vC =
√∣∣∣∣C11+ 1

C11− 1

∣∣∣∣µ−1
C , wC = 0 C ≡ A or B (29)

so that

uA vB + uB vA + 2wA wB =
√∣∣∣∣ (A11− 1) (B11+ 1)

(A11+ 1) (B11− 1)

∣∣∣∣µA µ−1
B

+
√∣∣∣∣ (A11+ 1) (B11− 1)

(A11− 1) (B11+ 1)

∣∣∣∣µ−1
A µB

and we have finished, becauseµA ≡ µB (this follows either by the properties of even and
odd solutions of the Schrödinger equation or the nature of the transmission line), and makes
it possible for the last expression to be rewritten (with the clear orbit interpretation) as

ω + 1

ω
> 2 ω ∈ R+. (30)

It also seems worthwhile to mention that these results are applicable to any one-dimensional
or quasi-one-dimensional systems, such as isotopically or non-isotopically polyatomic
disordered chains or transmission lines with varying physical parameters composed of
inequivalent electrical, mechanical or optical filters (cf, e.g., [6, 7, 19, 20]).

Our final comment is to mention that the very basic Lie group theory has once again been
found to be useful in a problem with no apparent symmetry. Another discrete, and in some
sense ‘hidden’, symmetry which stems from the time-reversal invariance of the fundamental
time-independent Schrödinger equation left implicit in our considerations manifests itself
by the possibility of forgetting about the dichotomy that appears in (8), and indicates that
the relevant group in this case isSO(2, 1).
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